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Abstract. The article illustrates the use of Fourier optics to describe the operation of two-beam scanning
laser interferometers. It deals with the effect of diffraction on the spatial periodicity of a monochromatic
and coherent beam. Particular attention is given to the analysis of systematic errors in high-accuracy laser
metrology. The article reviews the special case of plane wave and Gaussian illuminations, examines how
beam truncation affects the period of traveling fringes and presents a general relation between the relative
wavelength deviation and the impulse standard deviation of the photons.

PACS. 42.25.Fx Diffraction and scattering – 42.25.Hz Interference

1 Introduction

Since the late sixties, optical interferometry has been in-
creasingly applied in high-precision measurements, its use
having been triggered by the development of lasers and,
subsequently, by laser stabilization. However, stabiliza-
tion alone is not enough to meet the requirements of
today’s most accurate measurements, such as those nec-
essary in high-resolution spectroscopy in which accurate
observations require absolute interferometric measure-
ments of wavelengths to be made to within the 10−10

uncertainty level [1]. Another example is the determina-
tion of the Avogadro constant [2]. Several laboratories are
engaged in reducing the relative uncertainty to the 10−8

level, which requires, among other things, laser interfero-
metric measurements to be made to within 10−9 relative
uncertainty. At these levels of uncertainty, the relation
λ = c/ν (the symbols having the usual meanings) is valid
only for an ideal plane wave. In reality, some energy dis-
perses outside the region in which it would be expected
to remain in plane wave propagation. This effect is known
as diffraction and is an important and unavoidable phe-
nomenon connected with the wave nature of light. As a
result of diffraction, wavefronts bend and their spacing
varies from one point to an other and is different from the
wavelength of a plane wave.

Diffraction has been extensively investigated theoret-
ically and experimentally [3–10]. A twofold motivation
encouraged us to study this subject further. Firstly, we
are engaged in the measurement of the silicon lattice pa-
rameter (a basic ingredient in the determination of the
Avogadro constant) by combined X-ray and optical inter-
ferometry. We have studied diffraction by using the Gaus-
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sian approximation of laser beams [7] and subsequently
we extended the analysis to beam shear [8] and astigma-
tism [9]. However, recent improvements led us to increase
measurement resolution by one order of magnitude and to
consider the matter from an entirely different viewpoint
[11]. The potential 10−9 accuracy raises questions about
correction calculation and about the assessment of how
close a beam is to the perfection represented, conceptu-
ally, as a Gauss function. Secondly, we considered it use-
ful to exploit Fourier optics as much as possible, since it
provides the basis for an elegant formalism, shared with
quantum mechanics, which is suitable to describe interfer-
ometer operation and to calculate diffraction correction,
no matter how complex the illuminating wave may be.
Fourier optics can be applied also to study other inter-
ferometers; examples are atom and X-ray interferometry
[12–14]. In our article, we present, firstly, a formal theory
of two-beam scanning interferometry without putting any
restricting assumptions on the illuminating beam. Subse-
quently, we analyze the effect of diffraction, with emphasis
on the phase of traveling fringes. Finally, we give a few ex-
amples of the calculation of excess-phase and correction.

2 Basic theory

2.1 Impulse representation

In a two-beam interferometer, a laser beam is split into two
beams which recombine after propagating in the interfer-
ometer arms. To simplify matters, let us consider a two-
dimensional interferometer illuminated by a monochro-
matic wave Ei(x) = E(x; z = 0) which produces two
interfering beams E1(x; z) and E2(x; z). From a formal
point of view, an interferometer can be examined in terms
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Fig. 1. Schematics of a two-beam interferometer. The incom-
ing beam is split in S, delivered along paths 1 and 2, and
recombined in R.

of input-output relations as the transformation of the wave
Ei(x) into the wave E0(x) = E1(x) + E2(x), as shown in
Figure 1. In order to study diffraction, it is convenient to
use the mixed Fourier components of the incoming wave
with respect to the x variable [15]

Ẽ(p; z) = 〈p|E(z)〉 =

∫ +∞

−∞
E(x; z) exp(−ipx)dx. (1)

The optical path z is here an evolution parameter, which
is selected as a fictitious time. With the use of the math-
ematical formalism of quantum mechanics, E(x; z) and

Ẽ(p; z) are the space- and the impulse-domain represen-
tations of the abstract state vector |E(z)〉, which belongs
to the space of single-value square-integrable functions.
Accordingly, p equals the propagation vector of a plane
wave representing free particles of impulse ~p in a one-
dimensional space. Since the plane wave

E(x; z) = exp(ik · r) = 〈x|p〉 (2)

propagating with wave vector k = pex + qez, where |k| =
k = 2π/λ, is the space-domain representation of the base
vector |p〉, the impulse-domain representation (1) is known
as the angular spectrum of E(x; z). Putting γ to indicate
the propagation angle of (2) and assuming that |p| � k,
we can write the approximate relation γ = p/k, which
expresses the link between the impulse of the base vector
|p〉 and the direction of the corresponding plane wave.

With the use of impulse-domain representation and
the omission of common factors, the waves which leave
the interferometer after crossing it along paths 1 and
2 are

Ẽ1(p) = Ẽi(p), (3)

Ẽ2(p) = U(p; s)Ẽi(p), (4)

where s is the difference between the lengths of the optical
paths through the two interferometer arms and

U(p; s) = exp(iqs), (5)

where q2 = k2 − p2, is the impulse-domain representation
of the free propagator for the wave equation. If Ẽi(p) does
not contain “high frequency” components, which means
that |Ẽi(p)|2 6= 0 only if |p| � k, we can use the Fresnel

approximation

U(p; s) ≈ exp

[
ik

(
1−

p2

2k2

)
s

]
. (6)

Consequently,

Ẽ2(p) = exp

[
ik

(
1−

p2

2k2

)
s

]
Ẽi(p). (7)

The detected signal is the integral of the interference pat-
tern

S(x) = |E1(x) +E2(x)|2 (8)

over the detector aperture. For the sake of simplicity, and
since we confine ourselves to the case of limited transverse
extension of E(x; z) and of a large detector aperture, we
set the integration limits at infinity. According to Parse-
val’s theorem,

I =

∫ +∞

−∞
S(x)dx =

∫ +∞

−∞
S(p)dp, (9)

where

S(p) = |Ẽ1(p) + Ẽ2(p)|2

= |Ẽi(p)|
2

∣∣∣∣1 + exp

[
iks

(
1−

p2

2k2

)]∣∣∣∣2 . (10)

During mirror movements the outgoing beam is inten-
sity modulated. If a plane wave is assumed to prop-
agate through the interferometer, a simple ray tracing
shows that the optical-path difference changes by s cosγ ≈
s(1−γ2/2), with the propagation angle γ denoting the de-
viation from the optical axis. Since γ = p/k, the excess
phase in (10) accounts for the cosine error. If we put the
mean intensity

G =

∫ +∞

−∞
|Ẽi(p)|

2dp, (11a)

visibility Γ (s) = |Ξ(s)|/G , where

Ξ(s) =

∫ +∞

−∞
|Ẽi(p)|

2 exp

(
isp2

2k

)
dp, (11b)

and excess phase Φ(s) = arg [Ξ(s)], we can write (9) in
the form

I(s) = 2G {1 + Γ (s) cos [ks− Φ(s)]} . (11c)

The use of the Fresnel approximation corresponds to
approximating the wave equation by means of the
Schrödinger-type equation

i∂z|E(z)〉 = H|E(z)〉, (12)

where H = p2/2k. Therefore, by solving the Heisenberg-
type equation of motion

i∂zσ
2
x(z) = 〈E(z)|[x2,H]|E(z)〉, (13)
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which gives the evolution of the position variance of
photons

σ2
x(z) = 〈E(z)|x2|E(z)〉

=

∫ +∞

−∞
x2|E(x; z)|2dx∫ +∞

−∞
|E(x; z)|2dx

, (14)

one can prove that, with a suitable choice of the origin,
σ2
x(z) obeys the free space propagation rule [16]

σ2
x(z) = σ2

0 +
σ2
p

k2
z2, (15)

where σ2
x = σ2

0(z = 0) is the position variance of photons
at the “initial time” and

σ2
p = 〈E(z)|p2|E(z)〉

=

∫ +∞

−∞
p2|Ẽ(p; z)|2dp∫ +∞

−∞
|Ẽ(p; z)|2dp

, (16)

is the impulse variance of photons. It must be noted that,
owing to the fact that the impulse is a constant of motion,
free propagation does not change Ẽ(p; z). Therefore, beam
amplitude and intensity profile change with propagation,
but |Ẽ(p)|2 does not and the impulse variance σ2

p is con-
stant. Physically, if the wave encounters no obstacles, the
impulse distribution does not change. For any arbitrary
beam, the position variance reaches its minimum σ2

0 at
a certain waist point and varies quadratically with z on
either side of that point. By defining, from analogy with
the Gaussian case, the spot size w(z) = 2σx(z), the for-
mula (15) is like that expressing the free-space variation
of the spot size of a Gaussian beam. Hence the divergence
angle

θ = 2σp/k, (17)

can unambiguously be defined for any real beam. Since x
and p are conjugate variables and σ0 < σx(z), the Heisen-
berg uncertainty principle,

2σpσ0 = M2 ≥ 1, (18)

which, by using (17) and w0 = 2σ0, can be also writ-
ten θw0 ≥ 2/k, states that there is a minimum possible
product of spot size and divergence. As the waist size is
squeezed down, the uncertainty in photon localization is
improved, but the uncertainty in impulse increases and the
beam diverges as it propagates. The uncertainty product
provides a means for a definition of photon localization
and of beam quality [17,18]: the dimensionless propaga-
tion parameter M2 defined in (18) measures the beam
spread and M2 = 1 corresponds to a diffraction-limited
beam.

If we put u = σ0p to indicate the impulse of the plane
wave components of |Ei〉, the tangent of the excess phase is

tanΦ(s) =

∫ +∞

−∞
|Ẽi(u)|2 sin(2ξu2)du∫ +∞

−∞
|Ẽi(u)|2 cos(2ξu2)du

, (19)

where ξ = s/(4zR) and zR = kσ2
0 is the Rayleigh range.

The use of the dimensionless impulse u and optical path
difference ξ allows different physical situations to be de-
scribed by the same equations and brings into light their
common scale and underlying equivalence.

2.2 Correction for diffraction

According to (11c), mirror movements give rise to trav-
eling fringes. Diffraction causes distortion of fringes, and
makes their period

λeff = λ

(
1 +

1

k

dΦ

ds

)
(20)

different from that obtained when the illuminating wave
is plane. The corrective term for the period of traveling
fringes is

∆λ

λ
=

1

k

dΦ

ds
=
θ2

4

(
1

M2

dΦ

dξ

)
, (21)

where the term enclosed within parentheses gives the “in-
variant” part of the correction and the factor the scale.
The asymptotic behaviour of the excess phase when the
optical-path difference tends to infinity can be obtained
by application of the stationary-phase method. Thus,

lim
s→∞

Φ(s) = π/4. (22)

With the optical-path difference tending to zero, the ex-
cess phase is

lim
s→0

Φ(s) =
sσ2
p

2k
, (23)

and the correction for diffraction

∆λ

λ

∣∣∣
s→0

=
σ2
p

2k2
, (24)

is proportional to the width of the impulse-domain rep-
resentation of |Ei〉. Equation (24) is a central result. It
expresses the relative deviation of the Ei(x; z) wavelength
with respect to a plane wave in terms of the impulse stan-
dard deviation of photons and reduces its computation to
the computation of the beam power spectrum, which can
be performed by using the Fourier transforming proper-
ties of converging lenses. It should be noted that, since
free propagation does not change |Ẽi(p)|2, the time z at
which the Fourier transform operation is performed is not
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a cause for concern and that (15) gives the basis for mak-
ing σp measurements also by means of a least squares fit
of the beam widths σx versus distance z. Equation (24)
can be simply interpreted as the mean cosine error of the
plane wave components of |Ei〉. In fact, by assuming the
beam axis to be parallel to the interferometer optical axis
and plane waves to be represented by rays, (24) is the
weighted mean of the cosine error for each ray, the weight
being the ray intensity |Ei(γ)|2 and misalignment being
the ray angle γ = p/k.

For any arbitrary beam, we can express the diffraction
correction in terms of divergence, which is easy to measure
and rigorously defined for any given beam. Hence,

∆λ

λ

∣∣∣
s→0

=
1

8
θ2 (25a)

and the inequality

∆λ

λ

∣∣∣
s→0
≥

1

2k2w2
0

(25b)

is valid. In the specific case of Gaussian illumination,
diffraction correction has already been obtained and re-
ported by several authors [4–7]. Only in this case does
the product of waist size by divergence take the minimum
value and equations (25a, 25b) are equivalent; if the illu-
mination is not Gaussian, the equality sign in (25b) is not
valid. A second key result is that, since we have not used
the explicit form of Ei(x) in obtaining (24) and (25a), our
results are valid no matter what the actual illumination
may be. To our knowledge, the validity of (25a) for any
kind of coherent illumination has so far never been sus-
pected.

We now establish more precisely the assumptions un-
derlying the Fresnel approximation and the meaning of
s→ 0 in (24). If σp � k, the assumption that Ẽi(p) does
not contain high-frequency components is correct. Then,
from the uncertainty principle, we obtain σ0 � λ. Conse-
quently, we can use the Fresnel approximation whenever
the spot size at the beam waist is much greater than the
wavelength. As regards the asymptotic behaviour of the
diffraction correction when the optical-path difference is
small, in order to obtain (24) the trigonometric functions
in (19) must be adequately be approximated by the linear

terms of their series expansions. Since |Ẽi(p)|2 acts as a
band-pass filter having bandwidth σp, only the |p| < σp
components contribute to the integrals. Consequently, to
be accurate, equations (24, 25a) require that the optical-
path difference satisfies the inequality sσ2

p/(2k) � 1, so
that, from the uncertainty principle, we obtain s � 4zR
or, equivalently, ξ � 1.

2.3 Three-dimensional case

The formal extension of our results to a three-dimensional
interferometer is straightforward. Additionally, if the il-
luminating wave is separated into two factors, each
dependent on only one rectangular coordinate, its impulse-
domain representation is the product of two one-
dimensional Fourier transforms and calculations sim-
plify into a succession of one-dimensional manipulations.

Hence, the impulse variance is defined in terms of rectan-
gular variances as σ2

p = σ2
px + σ2

py and

∆λ

λ

∣∣∣
s→0

=
θ2
x + θ2

y

8
· (26)

Additionally, if θx = θy = θ diffraction correction is
1/(4θ2). Another important class of separable functions
are those having circular symmetry. By exploiting the
transformations into polar coordinates, r2 = x2 + y2 and
p2 = p2

x + p2
y, in both the xy and pxpy spaces, the Fourier

transform can be written [15]

Ẽ(p; z) = 2π

∫ ∞
0

rJ0(rp)E(r; z)dr, (27)

where J0(rp) is the Bessel function of order zero.

3 Examples

We consider now a number of examples of calculations of
the excess phase and of the correction for diffraction.

3.1 Gauss function

We consider first the interferometer illuminated by a
monochromatic Gaussian beam. In the general case, the
beam is astigmatic, but it can always be separated into
two factors, each dependent on one rectangular coordi-
nate. Hence, the underlying problem is one-dimensional.
To simplify calculations, let us set z = 0 at the beam
waist, so that

Ei(x) = exp(−x2/w2
0) (28)

and

Ẽi(u) = w0

√
π exp(−u2), (29)

with u = σ0p, σ0 = w0/2 being the variance of (28). By us-
ing the dimensionless optical path difference ξ = s/(4zR),
the excess phase of traveling fringes and diffraction cor-
rection are

tanΦ(ξ) =

√
1 + ξ2 − 1

ξ
, (30)

∆λ

λ
=
θ2

4

dΦ

dξ

=
θ2

4

( √
1 + ξ2 − 1

2
√

1 + ξ2(1 + ξ2 −
√

1 + ξ2)

)
, (31)

respectively. It is well worth calculating the excess phase
and its derivative for a circularly symmetric beam. The
results are

tanΦ(ξ) = ξ/2 (32)

and

∆λ

λ
=
θ2

4

dΦ

dξ
=
θ2

4

(
1

1 + ξ2

)
. (33)
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3.2 Rectangle function

In the foregoing example, the transverse extent of Ei was
infinite. A finite interferometer aperture can be repre-
sented by a pupil function which is 1 inside the aperture
and is otherwise zero. Let us start by considering a plane
wave masked by a rectangular aperture, so that Ei is sep-
arated into factors, each dependent on one rectangular co-
ordinate, and the underlying problem is one-dimensional.
Then,

Ei(x) =

{
1 if |x| ≤ a

0 if |x| > a
, (34)

where 2a is the aperture side, and

Ẽi(u) =
2a sin(

√
3u)

√
3u

, (35)

where u = σ0p, with σ2
0 = a2/3 being the variance of (34).

Although the excess phase could be written in terms of
generalized hypergeometric series, it is better evaluated
by numerical quadrature and its derivative by finite dif-
ferences.

Since the impulse variance σ2
p diverges, the analytical

approach outlined for the estimate of the diffraction cor-
rection in the limit case of a small optical path difference
requires further analysis. A weak point is the assumption
of an unlimited detector aperture, introduced in order to
substitute integration in the impulse domain for integra-
tion in the space domain. If one analyses any beam hav-
ing an infinitely sharp edge, such as the rectangle function,
one finds that large-angle and evanescent waves contribute
to the interference pattern. To deal effectively with such
situations, one should truncate the impulse-domain rep-
resentation of |Ei〉. We outline here a procedure for doing
this for any beam. Diffraction calculations can be simpli-
fied if restrictions more stringent than those used in the
Fresnel approximation are adopted. In particular, let us
consider free propagation in the space-domain. Hence

E(x′; z) =

∫ +∞

−∞
U(x′ − x)E(x; z = 0)dx, (36)

where, apart from the phase factor exp(−iπ/4) which will
be omitted,

U(x) =
1

2π

∫ +∞

−∞
U(p) exp(ipx)dp

=
exp(ikz)
√
λz

exp

(
ikx2

2z

)
(37)

is the space-domain representation of the free propagator.
If, in addition to |p| < k, there are adopted 〈x〉 = 0 and the
stronger assumption 2z � zR, we can use the Fraunhofer
approximation

E(x′; z) =

exp

[
ik

(
1 +

kx′2

2z

)
z

]
√
λz

×

∫ +∞

−∞
E(x; z = 0) exp(−ikxx′/z)dx. (38)

Consequently, when z tends to infinity the field amplitude
is the Fourier transform of E(x) with a multiplicative fac-
tor. The conditions required for the Fraunhofer approx-
imation to be valid are severe, but (38) remains valid if
the observation plane is the focal plane of a converging
lens, or if the interferometer is illuminated by a wave con-
verging toward the observation plane. For our purposes,
the most interesting property of a converging lens is its
capability to perform Fourier transformations [15]: the in-
tensity distribution over the focal plane is equal to the
power spectrum. To give an example, if the interference
pattern is observed in the focal plane of a converging lens,
the detector aperture b limits the impulse-domain inte-
grations to β = kb/f , where f is the lens focal length.
More generally, a converging lens maps the different plane
wave components of |Ei〉 into different points of the focal
plane and allows specific contributions to the interference
pattern to be selected by spatial filtering techniques.

3.3 Truncated Gauss function

We consider now the case when an interferometer has a
finite aperture and is illuminated by a Gaussian beam.
Let us consider a simple rectangular aperture, so that the
underlying problem is one-dimensional, and consider the
aperture located at the beam waist. Thus, if 2a is the
aperture side,

Ei(x) =

{
exp(−x2/w2

0) if |x| ≤ a

0 if |x| > a
. (39)

The standard deviation of (39)

σ0(α) = w0

√
1

4
−
α exp(−2α2)
√

2πerf(
√

2α)
, (40)

where α = a/w0 and erf is the error function, is shown
in Figure 2. It is well worth noting that the Gauss and
rectangle functions are the limit cases of (39) when α tends
to infinity and to zero, respectively. The amplitudes of the
plane wave components of (39)

Ẽi(p) =
w0
√
π

2
exp(−w2

0p
2/4)

× erf(α+ iw0p/2) + c.c., (41)

are shown in Figure 3. In the figure, the abscissa is the
dimensionless impulse u = σ0p, which allows a compar-
ison of the spectra originated by different interferometer
apertures and by the limit cases. The impulse-domain ra-
dius of the truncated beam is always greater than that
of a Gauss function and diffraction rings are already evi-
dent when α = 1, that is, when the beam is truncated at
the 1/e2 radius. When α tends to infinity, the error func-
tion tends to one, making (41) a Gauss function, whereas,

when α tends to zero, Ẽi(u) tends to (35).
The excess phase and its derivative are shown in Fig-

ures 4 and 5, where different interferometer apertures and
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Fig. 2. Standard deviation of a truncated Gauss function vs.
interferometer aperture α = a/w0.
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Fig. 3. Amplitude spectrum of a truncated Gauss function
vs. dimensionless impulse u = σ0p. Different values of inter-
ferometer aperture α = a/w0 are considered. The value at the
origin is normalized to one. The limit cases α→ 0 and α→∞
correspond to rectangle and Gauss functions, respectively.

the limit cases when the interferometer is illuminated by
a Gauss or by a rectangle function are compared. It
must be noted that graphs are enclosed between the ex-
cess phases which had resulted from a Gauss function and
from a rectangle function. We evaluated the excess phase
by numerical quadrature of (19) and its derivative by finite
differences. Consequently, the only assumptions made in
obtaining the curves shown in Figures 4 and 5 are those
ensuring that the Fresnel approximation is valid and no
restriction is made on the optical path difference. Since
the integrands are oscillatory, we integrated between suc-
cessive zeroes and added the alternating results. As the

ξ

Φ
 (

ra
d)

0

0.2

0.4

0.6

0 0.5 1 1.5 2

Fig. 4. Excess phase vs. dimensionless optical-path difference
ξ = s/(4zR) for a truncated Gauss function. The dimension-
less variable α = a/w0 represents the interferometer aperture.
The limit cases α → ∞ and α → 0 correspond to Gauss and
rectangle functions, respectively.

ξ

dΦ
/d

ξ 
 (

ra
d)

0

0.3

0.6

0.9

1.2

0 0.5 1 1.5 2

Fig. 5. Derivative of the excess phase vs. dimensionless optical-
path difference ξ = s/(4zR) for a truncated Gauss function.
The dimensionless variable α = a/w0 represents the interfer-
ometer aperture. The limit cases α→∞ and α→ 0 correspond
to Gauss and rectangle functions.

optical-path difference ξ tends to zero, the derivative in-
creasingly oscillates and an increasing number of zeroes,
even infinite, is required to get a reasonably accurate value
of the derivative. For this reason, instabilities prevented
us from evaluating the derivative in the neighbourhood of
the origin.

As u tends to infinity, |Ẽi(u)|2 falls off only as 1/u2.
Therefore, σ2

p diverges. In order to estimate diffraction
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(σ0k/f)b

σ 02 σ p2
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Fig. 6. Impulse variance of a truncated Gauss function vs.
detector aperture b. Different values of interferometer aperture
α = a/w0 are considered. The limit cases α → ∞ and α → 0
correspond to Gauss and rectangle functions, respectively.

(bk/f)σ0

σ p2 /β
2

0

0.1

0.2

0.3

0 1 2 3 4 5

Fig. 7. Impulse variance of a truncated Gauss function vs.
interferometer aperture σ0. Different values of detector aper-
ture β = bk/f are considered. The limit cases α → ∞ and
α → 0 correspond to the impulse variance of a Gauss func-
tion vs. waist size (σ0 = w0/2) and of a rectangle function vs.
interferometer aperture (σ0 = a/31/2).

correction, we must take the detector aperture, which,
therefore, plays an important role in the interferometer
operation, into account. Results are shown in Figures 6
and 7. Figure 6 shows the impulse variance as a func-
tion of the detector aperture b with fixed interferometer

aperture α,

σ2
0σ

2
p(b) =

∫ σ0β

0

u2|Ẽi(u)|2 du∫ σ0β

0

|Ẽi(u)|2 du

, (42)

where the integration limit is σ0β = kbσ0/f , u = σ0p,
and σ0 is given by (40). For any given detector aperture,
the integration limit can be varied also by changing the
interferometer aperture, which is conveniently represented
by σ0. Figure 7 shows, consequently, the impulse variance
as a function of σ0 with the detector aperture, which is
conveniently represented by β, fixed,

σ2
p(σ0)

β2
=

1

σ2
0β

2

∫ σ0β

0

u2|Ẽi(u)|2du∫ σ0β

0

|Ẽi(u)|2du

· (43)

Since diffraction rings cross the detector edge in succes-
sion, with the aperture of the detector or of the interferom-
eter increasing, the curves in Figures 6 and 7 oscillate. In
the figures, the abscissa, is the integration limit in the u-
space, but the independent variable is b in Figure 6 and σ0

in Figure 7. We made this choice in order to compare dif-
ferent detector and interferometer apertures and the limit
cases when the interferometer is illuminated by a Gauss
or by a rectangle function. When the detector aperture
tends to zero, we select the plane wave propagating along
the optical axis and, as Figure 6 shows, diffraction correc-
tion is zero. When it is a matter of Gauss and rectangle
functions, Figure 7 needs the following additional spec-
ifications. Firstly, in the figure, all cases with the same
w0β product are described by the same curve. Secondly,
when α tends to zero, (39) is a rectangle function, the
limit curve is the same for any given value of β, and the
abscissa represents the interferometer aperture, a/

√
3. In

this case, when a tends to infinity, |Ei〉 is a plane wave and
σ2
p is zero, as expected, and, when a tends to zero, |Ei〉 is a

spherical wave and σ2
p equals β2/3. Thirdly, when α tends

to infinity, (39) is a Gauss function, the limit curve is here,
too, independent of the β value, and the abscissa repre-
sents the waist size σ0 = w0/2. Fourthly, in the remaining
cases, the beam begins as a rectangular function and, as
σ0 increases, it becomes a Gauss function. However, the
maximum permissible value of σ0 is w0/2 and the curves
end when they join the limit curve corresponding to the
Gauss function.

4 Conclusions

This study of diffraction in two-beam interferometers sup-
plements the analysis of the error budget of the silicon
lattice parameter value and provides a safer theoretical
footing for the study of systematic errors in high-accuracy
laser interferometry. It allows the effect of deviations from
an ideal Gauss function on measurement accuracy to be
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quantified and, additionally, suggests how the relevant cor-
rection could be calculated or determined by means of ad
hoc experiments. It reveals also that diffraction does not
cause errors which cannot be dealt with.
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